L’introduction du temps objectif se décompose en deux opérations indépendantes :
1) on introduit un temps local objectif en rapportant le déroulement chronologique de l’événement vécu aux indications d’une « horloge », c’est-à-dire d’un système isolé à évolution périodique 2) on introduit le concept de temps objectif pour les événements se produisant dans tout l’espace, élargissant ainsi le concept de temps local au concept de temps de la physique.
Remarque au sujet du (1). Faire précéder le concept de temps par celui de déroulement périodique ne constitue pas à mes yeux une pétition de principe, s’il s’agit d’éclairer l’émergence, voire le contenu empirique du concept de temps. Cette conception correspond tout à fait à l’antériorité du concept de corps rigide (ou pratiquement rigide) dans l’explication du concept d’espace.
Développement du point (2). Jusqu’à l’avènement de la théorie de la relativité a prévalu l’illusion selon laquelle il existait, au niveau de l’expérience vécue, une connaissance claire a priori de ce que signifiait la notion de simultanéité d’événements distants dans l’espace et, par là même, la notion de temps physique. Cette illusion a son origine dans notre expérience quotidienne, dans laquelle nous pouvons négliger le temps de propagation de la lumière. Aussi avons-nous coutume de ne pas faire la distinction entre « voir en même temps » et « se produire en même temps », de telle sorte que la différence entre temps et temps local est effacée.
Le flou qui entoure, au point de vue de sa signification empirique, le concept de temps en mécanique classique a été occulté dans les représentations axiomatiques, parce que celles-ci traitent l’espace et le temps comme quelque chose de donné indépendamment des impressions sensibles. (…) C’est avec une confiance parfaite dans la signification réelle de la construction espace-temps qu’ils (les premiers théoriciens en physique) ont édifié les bases de la mécanique, que l’on peut caractériser comme suit,
(a) concept de point matériel : objet matériel susceptible d’être décrit avec une précision suffisante, pour ce qui est de sa position et de son mouvement (…) (b) principe d’inertie : les composantes de l’accélération d’un point matériel suffisamment éloigné de tous les autres sont nulles (c) lois de force (pour le point matériel) : Force égale masse fois accélération (d) lois de forces d’interaction entre les points matériels
(…) La mécanique classique n’est rien de plus qu’un schéma général ; elle ne devient une théorie qu’à partir du moment où les lois de force (d) sont données de façon explicite, ainsi que Newton l’a fait pour la mécanique céleste avec un succès si considérable. (…)
Si nous cherchons maintenant à établir la mécanique d’un objet matériel qui ne peut être lui-même traité comme un point matériel – ce qui est, en toute rigueur, le cas de tout objet « perceptible par les sens » -, alors se pose la question suivante : comment faut-il concevoir l’objet en temps qu’assemblage de points matériels et quelles sont les forces qui doivent être supposées agir entre ces points ? (…)
Pour la génération actuelle des théoriciens de la physique, l’édification de nouvelles bases théoriques suppose les recours à des concepts fondamentaux qui diffèrent notablement de ceux de la théorie de champ considérée jusqu’ici. La raison en est que les physiciens se sont vus contraints d’adopter de nouveaux modes de pensée lorsqu’il s’est agi de donner une description mathématique des phénomènes dits quantiques.
En effet, alors que la faillite de la mécanique classique – dévoilée par la théorie de la relativité – est liée à la finitude de la vitesse de la lumière (au fait que celle-ci ne soit pas égale à l’infini), on découvrit à l’orée de ce siècle des divergences entre les conclusions de la mécanique et les faits expérimentaux, divergences liées à la finitude de la constance h de Planck (au fait qu’elle ne soit pas égale à zéro). (…)
La question se pose en ces termes : comment assigner à un système donné, tel qu’on le conçoit en mécanique classique (où l’énergie est une fonction donnée des coordonnées et de leurs moments conjugués), une suite de valeurs discrètes de l’énergie ? »
Une hypothèse : la matière pourrait définir un espace et un temps au sein du vide
Ce qui caractérise la matière, c’est son existence durable. Ce qui caractérise le vide, c’est l’existence brève de ses quantons qui sont dits virtuels mais, rappelons-le, qui sont bel et bien réels. Ils sont seulement éphémères car ils s’accouplent très rapidement même si c’est en un temps aléatoire. Quand ils s’accouplent ils forment un photon. Qu’est-ce qui rend la particule de matière un peu plus « durable » ? C’est une particule virtuelle qui a reçu un boson de Higgs. Quelle hypothèse peut permettre de comprendre ce qui rend une telle particule un peu plus durable, c’est-à-dire qui retarde son accouplement avec un quanton virtuel du vide voisin ? Le fait que la matière constitue une espèce de trou au sein du vide quantique et retarde ainsi les accouplements possibles. D’où pourrait provenir ce « trou », cet isolement de la particule de matière, dite « particule réelle », par rapport aux particules du vide qui sont ses voisines, dites particules virtuelles ? La particule qui aurait reçu un boson de Higgs émettrait une onde de matière, dite onde de Broglie, qui repousserait les quantons virtuels voisins. Ce faisant, il y aurait modification du temps désordonné du vide. Le temps du vide est marqué par la durée moyenne d’accouplement des quantons virtuels. Ce temps serait modifié par la présence de la particule de masse (particule ayant reçu un boson de Higgs) du fait de l’écartement des particules virtuelles voisines. Le temps local tel que nous le connaissons (et non pas tel qu’il existe dans le vide quantique) serait dû à un retardement des interactions avec les quantons virtuels de l’environnement vide. Si une particule se trouve elle-même non dans un environnement vide mais dans un environnement de particules, une moyenne d’interactions avec les quantons virtuels va s’établir, menant à un temps moyen ou temps local. Le déplacement moyen d’une particule durant ce temps va également définir un espace. La matière durable (dite réelle) va ainsi définir un espace et un temps.
Albert Einstein
domingo, 9 de junho de 2019
Subscrever:
Enviar feedback (Atom)
Sem comentários:
Enviar um comentário